Cooperativity in protein-folding kinetics.
نویسندگان
چکیده
How does a protein find its native state without a globally exhaustive search? We propose the "HZ" (hydrophobic zipper) hypothesis: hydrophobic contacts act as constraints that bring other contacts into spatial proximity, which then further constrain and zip up the next contacts, etc. In contrast to helix-coil cooperativity, HZ-heteropolymer collapse cooperativity is driven by nonlocal interactions, causes sheet and irregular conformations in addition to helices, leads to secondary structures concurrently with early hydrophobic core formation, is much more sequence dependent than helix-coil processes, and involves compact intermediate states that have much secondary--but little tertiary--structure. Hydrophobic contacts in the 1992 Protein Data Bank have the type of "topological localness" predicted by the hypothesis. The HZ paths for amino acid sequences that mimic crambin and bovine pancreatic trypsin inhibitor are quickly found by computer; the best configurations thus reached have single hydrophobic cores that are within about 3 kcal/mol of the global minimum. This hypothesis shows how proteins could find globally optimal states without exhaustive search.
منابع مشابه
Cooperativity and the origins of rapid, single-exponential kinetics in protein folding.
The folding of naturally occurring, single-domain proteins is usually well described as a simple, single-exponential process lacking significant trapped states. Here we further explore the hypothesis that the smooth energy landscape this implies, and the rapid kinetics it engenders, arises due to the extraordinary thermodynamic cooperativity of protein folding. Studying Miyazawa-Jernigan lattic...
متن کاملThe Importance of Hydration for the Kinetics and Thermodynamics of Protein Folding: Simpli ed Lattice Models
Background: Recent studies have proposed various sources for the origin of cooperativity in simpliied protein folding models. Important contributions to cooperativity that have been discussed include backbone hydrogen bonding, side-chain packing, and hydrophobic interactions. Related work has also focused on what interactions are responsible for making the free energy of the native structure a ...
متن کاملCooperativity, smooth energy landscapes and the origins of topology-dependent protein folding rates.
The relative folding rates of simple, single-domain proteins, proteins whose folding energy landscapes are smooth, are highly dispersed and strongly correlated with native-state topology. In contrast, the relative folding rates of small, Gō-potential lattice polymers, which also exhibit smooth energy landscapes, are poorly dispersed and insignificantly correlated with native-state topology. Her...
متن کاملCooperativity and Stability in a Langevin Model of Protein Folding
We present two simplified models of protein dynamics based on Langevin’s equation of motion in a viscous medium. We explore the effect of the potential energy function’s symmetry on the kinetics and thermodynamics of simulated folding. We find that an isotropic potential energy function produces, at best, a modest degree of cooperativity. In contrast, a suitable anisotropic potential energy fun...
متن کاملTheoretical studies of protein-folding thermodynamics and kinetics.
Recently, protein-folding models have advanced to the point where folding simulations of protein-like chains of reasonable length (up to 125 amino acids) are feasible, and the major physical features of folding proteins, such as cooperativity in thermodynamics and nucleation mechanisms in kinetics, can be reproduced. This has allowed deep insight into the physical mechanism of folding, includin...
متن کاملProbing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues.
Experiments point to appreciable variations in folding cooperativity among natural proteins with approximately 40 residues, indicating that the behaviors of these proteins are valuable for delineating the contributing factors to cooperative folding. To explore the role of native topology in a protein's propensity to fold cooperatively and how native topology might constrain the degree of cooper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 5 شماره
صفحات -
تاریخ انتشار 1993